Diferencia entre varianza y covarianza

Diferencia entre varianza y covarianza
Diferencia entre varianza y covarianza

Video: Diferencia entre varianza y covarianza

Video: Diferencia entre varianza y covarianza
Video: ¿Qué es la Distribución Normal? | Videos Educativos Aula365 2024, Noviembre
Anonim

Varianza frente a covarianza

Varianza y covarianza son dos medidas utilizadas en estadística. La varianza es una medida de la dispersión de los datos, y la covarianza indica el grado de cambio de dos variables aleatorias juntas. La varianza es más bien un concepto intuitivo, pero la covarianza se define matemáticamente de forma no tan intuitiva al principio.

Más sobre la varianza

La varianza es una medida de dispersión de los datos del valor medio de la distribución. Indica qué tan lejos se encuentran los puntos de datos de la media de la distribución. Es uno de los principales descriptores de la distribución de probabilidad y uno de los momentos de la distribución. Además, la varianza es un parámetro de la población, y la varianza de una muestra de la población actúa como un estimador de la varianza de la población. Desde una perspectiva, se define como el cuadrado de la desviación estándar.

En lenguaje sencillo, se puede describir como el promedio de los cuadrados de la distancia entre cada punto de datos y la media de la distribución. La siguiente fórmula se utiliza para calcular la varianza.

Var(X)=E[(X-µ)2] para una población, y

Var(X)=E[(X-‾x)2] para una muestra

Se puede simplificar aún más para dar Var(X)=E[X2]-(E[X])2.

Variance tiene algunas propiedades distintivas y, a menudo, se usa en estadísticas para simplificar el uso. La varianza no es negativa porque es el cuadrado de las distancias. Sin embargo, el rango de la varianza no está limitado y depende de la distribución particular. La varianza de una variable aleatoria constante es cero y la varianza no cambia con respecto a un parámetro de ubicación.

Más información sobre la covarianza

En teoría estadística, la covarianza es una medida de cuánto cambian juntas dos variables aleatorias. En otras palabras, la covarianza es una medida de la fuerza de la correlación entre dos variables aleatorias. Además, puede considerarse como una generalización del concepto de varianza de dos variables aleatorias.

La covarianza de dos variables aleatorias X e Y, que se distribuyen conjuntamente con un segundo momento finito, se conoce como σXY=E[(X-E[X])(Y-E[Y])]. A partir de esto, la varianza puede verse como un caso especial de covarianza, donde dos variables son iguales. Cov(X, X)=Var(X)

Al normalizar la covarianza se puede obtener el coeficiente de correlación lineal o coeficiente de correlación de Pearson, que se define como ρ=E[(X-E[X])(Y-E[Y])]/(σ X σY)=(Cov(X, Y))/(σX σY )

Gráficamente, la covarianza entre un par de puntos de datos se puede ver como el área del rectángulo con los puntos de datos en los vértices opuestos. Puede interpretarse como una medida de la magnitud de la separación entre los dos puntos de datos. Considerando los rectángulos para toda la población, la superposición de los rectángulos correspondientes a todos los puntos de datos puede considerarse como la fuerza de la separación; varianza de las dos variables. La covarianza es en dos dimensiones, debido a dos variables, pero simplificarla a una variable da la varianza de una única como la separación en una dimensión.

¿Cuál es la diferencia entre varianza y covarianza?

• La varianza es la medida de propagación/dispersión en una población, mientras que la covarianza se considera una medida de variación de dos variables aleatorias o la fuerza de la correlación.

• La varianza se puede considerar como un caso especial de covarianza.

• La varianza y la covarianza dependen de la magnitud de los valores de los datos y no se pueden comparar; por lo tanto, están normalizados. La covarianza se normaliza en el coeficiente de correlación (dividiendo por el producto de las desviaciones estándar de las dos variables aleatorias) y la varianza se normaliza en la desviación estándar (tomando la raíz cuadrada)

Recomendado: