GCF frente a LCM
GCF y LCM son dos conceptos importantes que se enseñan en las clases de matemáticas para jóvenes. Estos son conceptos importantes en matemáticas que se usan incluso en clases posteriores para resolver preguntas más grandes y difíciles, lo que hace que sea imperativo comprender qué significan estos dos términos y cuál es la diferencia entre estos dos.
GCF
También llamado Máximo Común Divisor, se refiere al mayor factor que tienen en común dos o más números. Es el producto de todos los factores primos que estos números tienen en común. Veamos esto con un ejemplo.
16=2x2x2x2
24=2x2x2x3
Hay tres 2 comunes a ambos números, por lo que el MCD sería 2x2x2=8
LCM
Para entender el mínimo común múltiplo, necesitamos saber qué son los múltiplos. Es un número que es múltiplo de 2 o más números. Por ejemplo, si 2 y 3 son los números que nos dan, 0, 6, 12, 18, 24…. son los múltiplos de estos dos números.
Está claro entonces que el mínimo común múltiplo es el número más pequeño (excluyendo el cero) que es un múltiplo de los dos números. En este ejemplo, por supuesto, es 6.
LCM también se conoce como el número entero más pequeño que se puede dividir entre los dos números dados. Aquí, 6/2=3
Y 6/3=2.
Como 6 es divisible por 2 y 3, es el MCM de 2 y 3.
La diferencia entre GCF y LCM se explica por sí misma. Mientras que MCD es el número más grande compartido entre los factores de dos o más números, MCM es el número más pequeño que es divisible por ambos (o más) números. Para encontrar el MCM o el MCD de 2 o más números, es necesario factorizarlos.