Diferencia entre clasificación y predicción

Tabla de contenido:

Diferencia entre clasificación y predicción
Diferencia entre clasificación y predicción

Video: Diferencia entre clasificación y predicción

Video: Diferencia entre clasificación y predicción
Video: DIFERENCIA ENTRE ALGORITMOS DE CLASIFICACIÓN Y REGRESIÓN 2024, Noviembre
Anonim

Diferencia clave: clasificación frente a predicción

Clasificación y predicación son dos términos asociados con la minería de datos. Los datos son importantes para casi toda la organización para aumentar las ganancias y comprender el mercado. Los datos simples no tienen mucho valor. Por lo tanto, los datos deben ser tratados con el fin de obtener información útil. La minería de datos es la tecnología que extrae información de una gran cantidad de datos. Ayuda a obtener una comprensión amplia de los datos. Algunas aplicaciones de la minería de datos son el análisis de mercado, el control de producción y la detección de fraudes. La clasificación y la predicación son dos términos asociados a la minería de datos. Este artículo analiza la diferencia entre clasificación y predicación. La clasificación es el proceso de identificar la categoría o etiqueta de clase de la nueva observación a la que pertenece. La predicción es el proceso de identificar los datos numéricos f altantes o no disponibles para una nueva observación. Esa es la diferencia clave entre clasificación y predicación. La predicación no se refiere a la etiqueta de clase como en la clasificación.

¿Qué es la clasificación?

La clasificación es para identificar la categoría o la etiqueta de clase de una nueva observación. En primer lugar, se utiliza un conjunto de datos como datos de entrenamiento. El conjunto de datos de entrada y las salidas correspondientes se entregan al algoritmo. Entonces, el conjunto de datos de entrenamiento incluye los datos de entrada y sus etiquetas de clase asociadas. Usando el conjunto de datos de entrenamiento, el algoritmo deriva un modelo o el clasificador. El modelo derivado puede ser un árbol de decisión, una fórmula matemática o una red neuronal. En la clasificación, cuando se le da un dato sin etiquetar al modelo, debe encontrar la clase a la que pertenece. Los nuevos datos proporcionados al modelo son el conjunto de datos de prueba.

Imagen
Imagen

Clasificación es el proceso de clasificar un registro. Un ejemplo simple de clasificación es verificar si está lloviendo o no. La respuesta puede ser sí o no. Entonces, hay un número particular de opciones. A veces puede haber más de dos clases para clasificar. Eso se llama clasificación multiclase. En la vida real, el banco necesita analizar si otorgar un préstamo a un cliente en particular es riesgoso o no. En este ejemplo, se construye un modelo para encontrar la etiqueta categórica. Las etiquetas son peligrosas o seguras.

¿Qué es la predicación?

Otro proceso de análisis de datos es la predicación. Se utiliza para encontrar una salida numérica. Al igual que en la clasificación, el conjunto de datos de entrenamiento contiene las entradas y los valores de salida numéricos correspondientes. Según el conjunto de datos de entrenamiento, el algoritmo deriva el modelo o un predictor. Cuando se dan los nuevos datos, el modelo debe encontrar una salida numérica. A diferencia de la clasificación, este método no tiene la etiqueta de clase. El modelo predice una función de valor continuo o un valor ordenado.

La regresión se usa generalmente para la predicación. Predicar el valor de una casa en función de hechos como el número de habitaciones, el área total, etc. es un ejemplo de predicación. Una empresa puede encontrar la cantidad de dinero gastada por el cliente durante una venta. Ese también es un ejemplo de predicción.

¿Cuál es la similitud entre clasificación y predicación?

Tanto la clasificación como la predicación son formas de análisis de datos utilizadas en la minería de datos

¿Cuál es la diferencia entre clasificación y predicación?

Clasificación vs Predicación

La clasificación es el proceso de identificar a qué categoría pertenece una nueva observación sobre la base de un conjunto de datos de entrenamiento que contiene observaciones cuya categoría de pertenencia es conocida. La predicción es el proceso de identificar los datos numéricos f altantes o no disponibles para una nueva observación.
Precisión
En la clasificación, la precisión depende de encontrar la etiqueta de clase correctamente. En la predicación, la precisión depende de qué tan bien un predicador dado pueda adivinar el valor de un atributo predicado para un dato nuevo.
Modelo
Se construye un modelo o el clasificador para encontrar las etiquetas categóricas. Se construirá un modelo o un predictor que prediga una función de valor continuo o un valor ordenado.
Sinónimos del modelo
En clasificación, el modelo puede ser conocido como el clasificador. En predicación, el modelo puede ser conocido como predictor.

Resumen – Clasificación vs Predicción

La extracción de información significativa de un gran conjunto de datos se conoce como minería de datos. Este artículo analiza dos métodos de análisis de datos en la minería de datos, como la clasificación y la predicación. La velocidad, escalabilidad y robustez son factores considerables en los métodos de clasificación y predicción. La clasificación es el proceso de identificar la categoría o etiqueta de clase de la nueva observación a la que pertenece. La predicción es el proceso de identificar los datos numéricos f altantes o no disponibles para una nueva observación. Esa es la diferencia entre clasificación y predicación.

Recomendado: